[av_two_third first min_height=” vertical_alignment=’av-align-top’ space=” margin=’0px’ margin_sync=’true’ link=” linktarget=” link_hover=” padding=’0px’ padding_sync=’true’ border=” border_color=” radius=’0px’ radius_sync=’true’ background=’bg_color’ background_color=” background_gradient_color1=” background_gradient_color2=” background_gradient_direction=’vertical’ src=” attachment=” attachment_size=” background_position=’top left’ background_repeat=’no-repeat’ animation=’left-to-right’ mobile_breaking=” mobile_display=” av_uid=’av-2zku’]
[av_textblock size=” font_color=” color=” av-medium-font-size=” av-small-font-size=” av-mini-font-size=” av_uid=’av-jjst41ho’ admin_preview_bg=”]

Extremes are by definition rare. Statistical methods are critical for characterizing extreme weather in time and space, estimating changes in extreme weather, and quantifying our uncertainty about the frequency and trends in extremes.

The Statistics team is developing, implementing and advising on statistical methods for characterizing extremes in observations and model output. We are particularly focused on detection and designation of changes in extreme events, quantifying the evidence that the probability of extreme events are changing over time and that changes are caused by environmental drivers. As part of this work we are addressing the question of uncertainty characterization. A key focus is to identify the leading sources of uncertainty in our understanding of weather extremes (e.g., initial condition uncertainty/sampling uncertainty, forcing uncertainty, model parameter uncertainty).

Studies that aim to detect and attribute changes in extreme events have numerous sources of uncertainty, including parametric uncertainty, structural uncertainty, and even methodological uncertainty. In the current paradigm, these sources of uncertainty are dealt with in a piecemeal fashion that can result in overconfident statements of causation. This could cause, and in fact has produced, conflicts among causation statements on the same event. The sensitivity of event causation conclusions to the various sources of uncertainty remains sparsely investigated but is demonstrably important. The SFA team focuses on performing a multifaceted set of modeling experiments and analyses designed specifically to characterize, and if possible quantify, the importance of structural uncertainty, parametric uncertainty, and methodological uncertainty on our understanding of various classes of events.

[/av_textblock]
[/av_two_third]

[av_one_third min_height=” vertical_alignment=’av-align-top’ space=” margin=’0px’ margin_sync=’true’ link=” linktarget=” link_hover=” padding=’15px’ padding_sync=’true’ border=” border_color=” radius=’0px’ radius_sync=’true’ background=’bg_color’ background_color=” background_gradient_color1=” background_gradient_color2=” background_gradient_direction=’vertical’ src=” attachment=” attachment_size=” background_position=’top left’ background_repeat=’no-repeat’ animation=’right-to-left’ mobile_breaking=” mobile_display=” av_uid=’av-2zku’]
[av_heading heading=’Statistical methods to quantify changes in extreme weather in light of uncertainty.’ tag=’h3′ style=’blockquote modern-quote’ size=” subheading_active=” subheading_size=’15’ margin=” margin_sync=’true’ padding=’10’ color=” custom_font=” av-medium-font-size-title=” av-small-font-size-title=” av-mini-font-size-title=” av-medium-font-size=” av-small-font-size=” av-mini-font-size=” av_uid=’av-jk2tjtsx’ admin_preview_bg=”][/av_heading]

[av_image src=’http://climatemulti.wpengine.com/wp-content/uploads/sites/22/2018/07/thumbnail-default.png’ attachment=’326′ attachment_size=’full’ align=’left’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ copyright=” animation=’no-animation’ av_uid=’av-jjxsgt6d’ admin_preview_bg=”][/av_image]
[/av_one_third]